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Theory of x-ray scattering in the anomalous dispersion 
region and the problem of atomic-ternary-correlation- 
function determination in amorphous media 

R V Vedrinskii, V L Kraizman, A A Novakovich and 
V Sh Machavariani 
Theoretical Department of the Institute of Physics, Rostov State University, 
Stachky Ave. 194,344 104, Rostov-on-Don, Russia 

Received 22 October 1991 

Abstract. A new method for x-ray atomic scattering factor (ASF) calculations in solids is 
proposedwhichenablesone toobtainimaginaryandrealpartsofthens~without Kramers- 
Kr6nig transformation in the anomalous dispersion region (both in XANES and EYAFS 
regions). Themethodproposedallowsfor the inclusionottheenvironmentalinikenceupon 
the ASF of the atoms in solids. Due to such influence, Asf in general becomes an anisotropic 
tensor. Asan example, the ASF tensor componentsofa boronatom ina hexagonal BNcrystal 
are calculated near the BK absorption edge. Imaginary parts of the ASF tensor components 
are employed to calculate the XANES which appears to be in reasonable agreement with 
experiment. The formulae for the intensity of x-ray diffraction from a homoatomic thin 
amorphous sample in a K-edge EMS region are obtained. The environmental influence 
upon the ASF causes the fine structure in the frequency dependence of the x-ray diffraction 
intensity. This fine structure together with the angular dependence of diffraction intensity 
is shown to provide valuable information about atomic ternary correlation functions of 
amorphous media. 

1. Introduction 

X-ray scattering in condensed matter in a normal dispersion region of photon energy 
can be described satisfactorily within the framework of the free atom approach to the 
calculation of the atomic scattering factors (ASFS) [l]. In this frequency region only the 
small corrections caused by the difference between real crystalline electronic density 
and superposition of atomic densities of free atoms should be involved. However, if the 
photon energy is near the absorption edge of any atomic core level, the ASF depends 
appreciably on the chemical state and environment of the scattering atoms, as does the 
x-ray absorption cross-section in the near edge region, this being shown to be caused by 
scattering of the photoelectrons from the neighbouring atoms. In the case of the x-ray 
elastic scattering process real (photo) electrons do not appear in the final state, but in 
the intermediate state the virtual electrons exist. Due to the virtual electron interaction 
withsurrounding atomsthe ASF becomes an anisotropictensorwith sharp photonenergy 
dependence inthe anomalousdispersion region. Anisotropy of the ASFleadS to anumber 
of we11 known phenomena such as pleochroism, existence of 'structurally forbidden' 
reflections [2,3], birefringence, orientational dependence of XANES [4], reflectivity [5] 
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etc. The analysis of such experimental phenomena allows one to obtain important 
information about the atomic structure of the substances investigated. The energy 
dependence of the ASF in solids was treated in papers [M] by KramerSKronig trans- 
formation of EXAFS, and the explicit formula for Amfine structure was obtained, but the 
method proposed in these papers cannot be used in near edge regions. Besides, only the 
case of unpolarized radiation was considered in [M], hence anisotropy of the ASF was 
not treated. 

In section 2 a new method based on Green's function formalism is proposed for ASF 
calculations. A simple expression for the ASF derived there allows ab inirio computation 
of the ASF in the near edge region without using Kramers-Kronig transformation, An 
explicit EXAFS-like formula for extended fine structure of the ASF is also presented. In 
section 3, the ASF tensor of a boron atom in a hexagonal BN crystal is calculated near 
the B Kedge as an example of the method proposed. The imaginary part of this factor 
appears to be in reasonable agreement with experimental XANES. In section 4 the 
expressions for energy and angular dependence of x-ray scattering intensity are derived 
for the case of amorphous samples in the EXAFS region. Such dependence is shown to 
be the source of valuable information about atomic ternary correlation functions in 
amorphous media. 

R V Vedrinskii et a1 

2. The atomic scattering factor in the anomalous dispersion region 

For the sake of simplicity we suppose the photon energy to be close to the K absorption 
edge of the scattering atom. In this case, the atomic polarizability tensor can be 
divided into two parts: an anomalous part 2% which is due to 1s shell polarization, and 
a normal part x;im which is caused by the polarization of all other electrons: 

Hereafter the tensor components will be denoted by Greek subscripts. 
If the photon energy is close to the K edge it exceeds the ionization energies of all 

other shells by a considerable amount. Therefore, the tensor x;fm can be obtained 
within the traditional semiclassical approximation [l]. However, the polarizability of 
the Is shell in the dipole approximation is described by the well known quantum formula 

2 4  = XYP -+ xz. (1) 

Ill: 

where hw is the photon energy, e is the electron charge, In) and E, are an eigenfunction 
and an eigenvalue of the one-electron Hamiltonian, EF is the Fermi-level energy, i, is 
the position operator, r is the width of the excited state with a hole in the 1s shell and 
an electron in the In) state (we assume for simplicity that r does not depend on n ) ,  

If the photon energy is close to the K absorption edge, the second term in (2)  is small 
and the anomalous part of the ASF can be written as follows: 

where ro is the electron classical radius, m is the electron mass and c i s  the velocity of 
light. 
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Straightforward calculation of the ASF based on expression (3) is difficult because of 
the infinite degeneracy of the eigenvalues E, and the complicated character of the 
electron wave functions calculated in polyatomic system potentials, Similar difficulties 
appear in the theory of x-ray absorption fine structure where the one-electron Green's 
function (GF) method is shown to be very convenient [9, lo].  It will be shown below that 
this method also permits simplification of the formula (3) and development of the new 
approach to ASF theory to allow the calculation of the tensor f 2 without using Kramers- 
Kronig transformation. 

The one-electron GF is defined in the usual way [U] 

In order to calculate expression (3) using the definition (4) of GF one should carry 
out the summation in the right-hand part of (3) over all n and then subtract the sum over 
filled electron states: 

=2m02(lsli ,G(hw + E,, + iT/2)ip/ls) 

Here we have used the well known relation for the GF discontinuity at a real axis [U] 
G(E + iq) - G(E - iq) = - b i  C In)(nIB(e - E,)  

n 

where q is a positive infinitesimal constant. 
The second term in the right-hand part of (5) can be written as follows: 

where 2 is the path in the complex energy plane shown in figure 1. 
At a real axis of the complex energy plane, the GF G(e) has poles when E is equal to 

the bound state energies and may also have sharp maxima in the valence band region, 
hence straightforward numerical calculations of expression (6) are complicated. It is 
convenient to rewrite expressions (5) and (6)  so that one can use the path 2,  shown in 
figure 1 instead of 2 where the path 2 envelopes the energies of all filled electron states 
and rt is greater than r. The GF, G(e) ,  is a smooth function of E along the path 2 ,  that 
significantly simplifies the numerical calculations of the integral term in (5) .  



6158 R V Vedrinskii et a1 

In' 1 

Figurel.Thepathsieandie,inthecomplexenergyplaneusedinformulae(6)and(7).The 
beginning and the final points of both paths are EF -+ io. Discrete and continuous parts of 
the one-electron Hamiltonian spectrum are shown on the real axis. 

Finally, the anomalous part of the ASF can be expressed in the form 
fz = 2mw2(lslP, G(ho + E,,  + ir/2) is 11s) B(hw + E, ,  - EF) 

where 

It is worth noting that the ASF is an unbroken function of the electron energy 
(hw + EIS)  at the Fermi level, though both terms in the right-hand part of (7) have 
discontinuities at this point. 

The GF of the electron in a polyatomic system could be calculated easily if the 
muffin-tin approximation for the one-electron potential was used [9, lo]. Due to strong 
localization of the 1s wave function one has to know the GF G(r, r', E) in (7) only for the 
arguments rand r' lying within the scattering atom sphere. In this case, the following 
expansion for the GF takes place [lo]: 

2mk 
G(r, r', E )  = Go(r, r',  E )  + - exp[(i(61 + 6;)]GTL3 ( E )  

h2 L,L' 

x WE,  r)YL(Q,)W ( E ,  r')YLs (8,) (8) 
where Go (r ,  r',  E )  is the electron GF calculated for the isolated atomic sphere of the 
scattering atom, R?(r) is the regular solution of the radial Schroedinger equation for 
atom number n. Sf is the partial scattering phase shift, lis the electron angular momen- 
tum, n is the scattering atom number, L = (1,  m) and YJQ,) is the real spherical 
harmonic. Hereafter, the origin of the electron energy E is combined with the muffin- 
tin zero: k = ( 2 m ~ / h ~ ) ' / ~ .  The coefficients G$ could be determined from the system 
of algebraic equations 19, lo]: 

GTL:, = g$, + >=>=g"l";.t$Gf$:. (9) 
L' "' 

where tl  = -sin(@) exp(i67) 
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and 

If one substitutes the expansion (8) for the expression (7), the anomalous correction 
f 3 to the ASF can be divided into two parts: 

fz  = Af(0)6m8 + Af$ (10) 

where 

Af(n)=~mmw2<ls~rCo(f iw +E,, +ir /2)r l ls>B(fiw+E1,  - E F )  

m o 2  
dc 

is an isolated atomic-sphere anomalous correction. 
The sum 

(12) f””m + A f (0) = f i s d  

is the total scattering factor of the isolated atomic sphere. The difference between the 
isolated atomic sphere scattering factor and that of the free atom will be considered in 
the following section. 

The second part of the anomalous correction A f$ appears to be due to virtual 
electron scattering from the atoms surrounding the scattering one. Therefore, it could 
be called the virtual electron scattering correction (VESC). This correction is in general 
the anisotropic tensor, in contrast to the atomic-sphere contribution A f(O’6,p. Taking 
into account dipole selection rules, one can write the following expression for the VESC 
of the atom located at point r, 

Af$(w r n )  = ( h w / f i )  ( k/3) { G$(E,)M&(E~) eZiSh)B(fiw + El,  - EF) 

where E, = fio + Elr+ir/2.   mol(^) =Jq,(r)r3R1(s, r)dr. Vector subscripts a, p 
insteadofL,L’appearin(13) becauserealsphericalharmonics YIm(0,)forl = lcoincide 
with the components of the vector r/r; hence, in this case, one can denote the angular 
harmonics by Y,(Q,) and the corresponding coefficients GZ. by GZ.  

Above the Is threshold, the integral term in (13) is a smooth fundion of photon 
energy that decreases as (fio + E,, - EF)-l, hence the ASF fine structure appears due 
to only the first term in the braces in (13). Keeping in mind the similarity between this 
term and XANES one can say that the ASF fine structure in the near edge region is caused 
by multiple scattering of virtual electrons from the neighbouring atoms. 

If the photon energy exceeds the absorption edge by more than 20-50 eV, the single- 
scattering approximation is usually valid to describe the interaction of both real photo 
andvirtual electronswith neighbouringatoms [12]. (Exceptions to this rule were treated 
in ZXAFS theory [ 12-14].) In this energy region, partial scattering amplitudes tl are small 



6160 R V Vedrinskii et a1 

and the first iteration of equation (9) gives a good approximation for the electron GF 
[15,161 

G"ijl(E,) = -k 4ni-' i" 2 Y (Q,np)YL' (Q ,J exp(2ikrnq) exp( - mrr,, /hz  k ) P  (x)/r:, 
n 

q z n  

(14) 
where P ( x )  = -(l/k) &(2l+ l)P,(-l)?y is the electron backscattering amplitude, 
rns = r, - r,, r, is the radius vector of the nth atom, k = [2m(ho + El ,  - Eo)]'fl/Fi is 
the electron wave vector, Eo is the muffin-tin zero and f,(cos e) is the Legendre poly- 
nomial. 

Using the single-scattering approximation (14) for the GF and neglecting the rapidly 
decreasing integral term in (13), one obtains an explicit expression for the VESC in the 
extended fine structure region: 

q f n  

(15) 
In cubic crystals, the ASF is the isotropic tensor, and in this case the expression (15) 

is similar to that obtained earlier [M] by Kramers-Krbnig transformation. Contrary to 
this case, the expression (15) is valid for crystals of any symmetry and amorphous media 
as well. In section 4 we show, by exploiting (15), that the intensity of the radiation 
scattered from the amorphous samples is determined by pair and ternary atomic dis- 
tribution functions that give the opportunity toobtain information about these functions 
from the experimental spectra. 

3. Calculation of the ASF tensor for a boron atom in a hexagonal BN crystal 

In order to illustrate the theory developed here we have calculated the boron atom 
scattering factor in a hexagonal BN (h-BN) crystal near a B K absorption edge. It was 
shown in [17] that the near edge fine structure of B K absorption spectra in h-BN has a 
number of prominent features. In the case of monocrystal samples the intensities of 
these features depend appreciably on the direction of the electric field vector if linearly 
polarized radiation is employed [18,19]. Keeping in mind these characteristic features 
of XANES one can expect that the ASF of a boron atom in h-BN is the anisotropic tensor 
and that its components depend sharply on the photon energy near the B K absorption 
edge. 

The crystal structure of h-BN is graphite-like [20], therefore this crystal is dichroic. 
If one directs the z-axis of the coordinate system along the principal optical axis of the 
crystal, the ASF tensor will be diagonal and f, = f,. Moreover, the GF components 
GE and Gg which are needed for the calculation of Aflf) and Af$ transform according 
to different irreducible representations of the D,, group; hence these components could 
be calculated independently of equation (9). Such symmetry enables one to generalize 
the usual procedure of muffin-tin calculations to accommodate layered systems. The 
proposed generalization is necessary because the real potentials of layered systems are 
very anisotropic especially in the interstitial volume. Indeed, the potential averaged 
along the electron paths joining the atoms belonging to one layer is essentially more 
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Figure 2. The 39-atom cluster of the h-BN crystal used in the calculations 

attractive than that averaged along the paths joining the atoms of different layers. 
Therefore the virtual electrons scattered from the atoms which belong to the same layer 
as the emitting atom, and electrons with the same energy scattered from atoms of 
neighbouring layers should have different average wave vector values in the interstitial 
region. If 1s electrons are excited into a continuum they move, for the most part, along 
the electric field vector of the incident radiation. Hence the average interstitial potential 
used for C$ calculations must be chosen to be more attractive than that used for Gg 
calculations. 

The system of equations (9) has been solved for the 39-atom cluster shown in figure 
2, and the scattering factor has been determined for the central boron atom of this 
cluster. Angular momenta of up to I = 2 for all atoms have been taken into account in 
calculations. The Herman-Skillman algorithm [21] with exchange parameters chosen 
according to Schwarz [22] was employed to calculate the atomic potentials. Atomic- 
sphere radii in the cluster were chosen to be equal to 0.75 8, for boron atoms and 0.7 8, 
for nitrogen atoms. Outside the cluster, the potential was chosen to be equal to the 
averaged interstitial potential (extended continuum model [23]). In order to investigate 
the influence of an inner Is hole on the ASF, two calculations with different central-atom 
electron configurations were carried out: (i) all atoms in the cluster were considered to  
beneutralinthegroundstate,(ii) theconfigurationofthecentral boronatomwaschosen 
to be Is'2s22pz so as to take into account Is hole and electron screening processes 
including extratomic screening. 

The interstitial potential value used for the calculation of GE was obtained by 
averaging the potential over the interstitial volume of the sphere encompassing a boron 
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Figure 3. Thcorcticai ( 0 )  and experimental ( b )  1171 B 
K-edge mNEsof the polycrystal h-BN sample. 

Figure 4. Imaginary and real parts of the anomalous 
correction to boron ASF tensor component4 f n  (solid 
lines) and f, =Ay (dashed lines) in the h-BN crystal 
near the baron Kedge. 

. .  -. r ... . ... . I .  .. -M atom and SIX nearest mtrogen atoms. I he interstitial potential vaue use0 in me 06 
calculation was obtained by averaging the potential over the interatomic segment of the 
line joining the nearest atomic spheres in the different layers. The difference in the 
interstitial potentials calculated in such a way appeared to about 4 eV. The difference 
obtained confirms the opinion that the traditional muffin-tin approximation is not good 
enough for layered systems. In order to examine whether the generalization proposed 
above is appropriate in this case, the fine structure of the B K absorption spectrum in h- 
BN was calculated and compared with experiment (171. The comparison of theoretical 
and experimental spectra obtained for a polycrystal sample is shown in figure 3. One can 
see that the main features of the theoretical spectrum (peaks A and B) agree well in 
their positions and relative intensities with those of the experimental spectrum if core- 
hole potential and electron screening are taken into account. This result confirms the 
calculation method proposed above. 

Our calculations show that peak A is caused by the singularity in G ~ ( E )  and peak B 
is caused by that in G$(&), This conclusion is confirmed by B K-edge XANES angular 
dependence experimentally obtained for a h-BN monocrystal [IS, 191. It is interesting 
to note that peak A, caused by the electron transition to the bound state, appeared in 
the forbidden gap due to the inhence of the 1s hole potential; so this peak represents 
the x-ray exiton and its width is determined entirely by many-electron effects. 

The calculated anomalous corrections to the scattering factor tensor components of 
the boron atom in a h-BN crystal are shown in figure 4. The observed fine structure of 
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the scattering factor is caused by the scattering of the virtual electrons from the atoms 
surrounding the scattering one. Similar scattering of the photoelectrons causes x-ray 
absorption fine structure. The influence of the virtual electron scattering on the ASF is 
usually strong in the near edge region whereas in the E W S  region, when photon energy 
exceeds the absorption edge by more than 20-50 eV, this scattering causes only weak 
oscillations of the ASF which are described by (15). Nevertheless, as it will be shown 
in the following section, the analysis of these oscillations could provide important 
information about the atomic structure of amorphous media. 

The results obtained show that, in the near edge region, there are often sharp peaks 
in the ASF caused by virtual electron scattering from neighbouring atoms. The peak 
values of the VESC sometimes exceed the normal contributions to the ASF significantly 
and could be large enough to allow confident observation of the contribution to the x- 
ray scattering intensity from the atoms of low-2 elements. Of course it is necessary to 
recognize that the calculated peak values of the ASF are determined to a considerable 
extent by the value of the intermediate state width r especially for the exitonic peak A. 
We considered the value of r to be approximately equal to the width of the exitonic peak 
in the experimental B K x-ray absorption spectrum 1171. 

It is worth noting, too, that the anomalous correctionfd” and the normal p a r t p m  
of the isolated atomic-sphere scattering factor differ to some extent from those of a free 
neutral atom. The difference in the anomalous corrections is caused by the dissimilarity 
of the virtual electron wave functions calculated using the different potentials of the 
isolated atomic sphere and the free atom. The difference in the ASF normal parts is due 
to the lack of identity of the electron density distributions in the isolated atom and in the 
corresponding atom in the crystal. 

4. Extended finestructureofthe SFanddeterminationoftheatomie ternary distribution 
function in amorphous media 

In this section x-ray scattering from thin homoatomic amorphous samples is treated. 
The intensity of the scattered radiation is calcuIated above the K absorption edge in the 
EMS region, It is shown that this intensity is determined by pair and ternary atomic 
distribution functions that enable one to obtain information about the ternary dis- 
tribution function in amorphous media from experimental spectra. Atomic ternary 
distribution functions (ATDFS) and, simply connected with them, atomic ternary cor- 
relation functions are of great interest for the theory of amorphous-media atomic 
structures [24]. A number of papers have been devoted to the problem of ATDF deter- 
mination by EXAFS spectroscopy [25-271. Unfortunately the x-ray absorption cross- 
section is a function of radiation frequency only, whereas the ATDF depends on three 
scalar arguments in homogeneous and isotropic media. Due to this fact, the method of 
ATDF analysis by means of EXAFS spectroscopy is restricted in principle. In the present 
paperanew approach to obtaining additionalinformation about ATDFisproposed which 
is based on the analysis of the frequency dependence of the x-ray scattering intensity in 
the EXAFS region. 

The angular distribution of x-ray diffraction in a normal dispersion region is deter- 
mined entirely by the atomic pair distribution function (APDF). This weU known result 
depends on the independence of the ASF on the position and chemical state of the 
scatteringatomsincondensedmatterwhen thephotonenergyisfarfromanyabsorption 
edge. As was shown in section 2, in the near edge region the ASF is the anisotropic tensor 
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which depends on the short-range atomic order due to virtual electron scattering from 
the scattering atom's neighbours (7). Therefore, in this region the intensity of the 
scattered radiation depends upon atomic correlation functions of orders higher than 
two. The simplest result takesplace in the region of extended fine structure (50-1000 eV 
above the K edge) where the single-scattering approximation successfully takes into 
account the interaction of the virtual electrons with the neighbouring atoms. In thiscase, 
the simple expression (15) for the VESC can be used. Let us calculate the intensity of the 
radiation scattered from a thin homoatomic amorphous sample in the EXAFS region of 
photon energy. The component n of the electric field vector % of the radiation scattered 
from a single atom to the direction n can be written as follows 111: 

R V Vedrinskii ef al 

where is the vector of the incident wave electric field, s is the diffraction vector, R 
is the distance between the sample and the detector, vector r defines the atom position 
in the sample and n, is the component of the unit vector n. 

If the sample analysed is thin enough that x-ray absorption in it may be neglected, 
the intensity of the radiation scattered from the sample can be obtained easily from 
formula (16): 

where summation overp and q extends over all atom numbers in the sample. 
In the ~ ~ ~ ~ s r e g i o n ,  the contribution from the VESC to the ASF is much smaller than 

the atomicone,fiml; hence, substituting(12) and (15)for thelast formulaandneglecting 
the termsproportional to F z ( n ) ,  one obtains 

where 

The first term in the braces has a well known form [24] whereas the last two terms 
describe the VESC influence on the scattered radiation intensity. 

Let the coordinate system be chosen in such a way that the z-axis is directed along 
the wave vector of the incident beam and the x-axis is directed along its electric field 
vector. Let us determine x-ray scattering intensities for the scattering planes combined 
withxz andyzplanes (pandspolarizationof theincident beam). Theseintensitiescould 
be obtained from the expression (18) taking into account that in both cases 
'er1 =%to) = 0, so the intensity Io of the incoming beam is equal to (l/Sz) ( % ~ o l ) z .  If 
28 is the scattering angle, then n, = sin(Z0). fly = 0, n, = cos(2B) for p polarization and 
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n, = 0, nv = sin(28),n, = cos(28) forspolarization. With the helpofequation (18),one 
obtains: 

+ 2Re [(fi”)*(T,cos(28) - Tzxsin(28))]] (20) 

for p polarization, and 
2 

I, = I, (2) [ I f im1 l 2  eir.‘w + 2Re [ ( y ’ ) * T , ] ]  
P.9 

fors polarization. 
For the isotropic sample it is convenient to calculate the tensor T using another 

coordinate system (x ‘ ,  y ’ ,  2’) with the z’-axis directed along the diffraction vector s. In 
this case the tensor T& obviously diagonal and TxcxV = Ty.y.. Denoting Tz.zp = T1 and 
T,.,. = Tyoy, = T2 one can obtain from (20) and (21) the following expressions: 

I , ( m ,  s) = I, e) cos(20) [ I f s 1  l 2  2 ei’.‘w + 2Re[(fS01)*(T,cos28 - T2sinz8)] 

=? 

(22) 
1 2 

P.9 

In order to calculate the components T ,  and T2 one needs to substitute (15) for (19): 

where 

u(rqn, re )  = (r,,):. exp[2ikr9, - mrr,/kfi2 + i ~ - r , ] / r ; ~ .  

Exploiting the relation Tz = 4(Tx,rp + T y ~ y ~ )  one can obtain the expression for T2 from 
that for TI by introducing the expression 4[(rqn):, + (r,&] in (24) instead of (rqn):, . 

In the case of amorphous media, the expressions (22) and (23) for the scattered 
radiation intensities have to be averaged over all possible atomic configurations in the 
sample. As follows from these formulae, the intensities needed are the linear functions 
of the components of the tensor 1. So in order to obtain the averaged intensities one 
should average the expressions for these components. Of course, the sum &e“’w 
appearing in (22) and (23) has to be averaged too. As is well known, such averaging is 
performed with the help of atomic distribution functions [24]. In homogeneous and 
isotropic media, the MDFg(f)  depends only on the distance between two atoms and the 
ATDFg(r1, rz, y)dependson threescalararguments whichdetermine theatomic triangle. 
We shall consider two sides-i-, and rrand the angle between them, y,  to be the 
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arguments of the ATDF. The atomic distribution functions used in this paper are nor- 
malized by their asymptotic behaviour [24] 

R V Vedrinskii et ai 

i f r + m  

if r 2 - + - a n d / r l  - r21+m.  
(25) 

g(4- 1 

r2, U) .+ 
Before averaging it is convenient to divide the members of the sum over q, p and n 

in(24)intothreegroups: (i)q = p , q # n ; ( i i ) q # p , n  =pand(iii)q # p + n .  

q P "+P 4 n+q q P f q  

+ E C E U(rqnrrqp). (26) 
q p + q n + q  

nfp 

The sum over two non-equal atomic numbers after averaging transforms into the 
integral with APDF according to the usual rule. For instance: 

where N is the total number of atoms in the sample and p is the atomic density. 
The sum over three non-equal atomic numbers after averaging transforms into the 

integral with ATDF: 

where A is the angle between the vectors rl  and r2. 
Using (26)-(28) one can easily obtain the averaged value of TI:  

2 
(TI) = (2":Mo1) F(n)eZi61Np 

x 1 + exp(irl cos e,) ]  g(rl) dr, dcos 8, [ 
+ p I( cos281 exp 

xg( r l , r2 ,A)r~dr ,dcos8 ,  d q ,  d r2dcos02dq (29) 

wherecosA = c o s 8 , c o s ~ ~ + s i n 8 , s i n 8 2 c o s ( ~ z - q 1 ) a n d q = 9 ] 2 - ~ , .  
The averaged component T2 can be obtained from (29) by replacing the term cos2 8,  

in the beginning of the integrands in (29) by 1 sin2 el: 
When one performs averaging of the sum Zp,q  e'"w, the expression similar to (27) 

can also be exploited, but an atomic correlation function h(r) = g(r) - 1 is usually 
substituted for the integrand instead of an atomic distribution function. Such replace- 
ment is caused by the divergence of the integral (27) in the case of infinite sample volume 
and does not change the result beyond the region of small scattering angles [24]. The 
result of such averaging is usually called the structure factor. 

When one averages the tensor components Ti the integrals containing the MDF 
are convergent due to the non-zero width, r, of the intermediate state that causes 
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exponential decreasing of the integrands as follows from (24). The integrand containing 
the ATDF decreases rapidly when r ,  + m but the integration over rz leads to a value 
proportional to the sample volume in the region of small scattering angles. Just as in the 
case of the structure factor calculation, it is possible to change the integrand in (29) and 
obtain a rapidly decreasing function without changing the result, with the exception of 
the small-angle region. 

In order to do this, one should use the difference g(rl, r2, y )  - g(rl) instead of the 
ATDF. According to (25) such a difference decreases when rz increases, and the integral 
treated appears to be convergent. Now one can write the expressions for scattered 
radiation intensities in the final form 

Zp(w, s) = Zo(ro/R)’ cos(28)N( Ifisollz [ 1 + (4np/s) I h(r) sin(sr) r dr] 

x [ Jg(r) exp(2ikr - mr r 1 f2(sr) dr 

m r  
+ p Il(g(r1 I r2, u) - g(r1)) exp(2ikr1- s r 1 )  exp(isr2 cos 0,) 

x 1 sin’ 8, r: dr, d cos 8, dr2 dcos 8’ drp I1 (31) 

where 

f , ( ~ ) = ~ ~ ’ c o s ~  8(l + e i x m s 8 ) s i n 8 d 8 = $  +sinx/x+2cosx/xZ -2sinx/x3 

f&) = [ 9 sinZ 8(l + eizcoss) sin 8 d8 = 5 + sinx/2x - cosx/x2 + sinx/x3. 

traditional expression for the structure factor [24]: 
To transform the formulae (22) and (23) into (30) and (31) we have used the 

I + (4zp/s) b ( r )  sin(sr)r dr 

and have carried out the integration over 8,. One can see from (30) and (31) that the 
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intensity of x-ray diffraction in the anomalous dispersion region is the sum of the terms 
with different origin which have quite unsimilar dependences on radiation frequency. 
The first terms in (30) and (31) are the traditional ones, which are determined by the 
scattering factors of isolated atomic spheresf’=’ and U D F .  The other terms appear to 
be due to VESC. They depend on both APDF and ATDF. The magnitudes of these terms 
are about a few percent of the first-term magnitudes of the low-energy side of the EXAFS 
region and fall with increasing radiation frequency. Nevertheless, the terms caused by 
VESC could be determined confidently from the experimental signal because of the quite 
different character of their frequency dependence compared to that of the traditional 
terms. Indeed, let one measure the frequency dependence of the diffraction intensities 
so as to keep the diffraction vector constant. In the EXAFS region, the scattering factor 
f””’may be considered to depend on the diffraction vector only, therefore the intensity 
of normal diffraction measured in such a way does not depend on radiation frequency 
at all. In contrast, the terms caused by the VESC show fast oscillations due to the 
factor exp(2ikr). The methods of decomposition of smooth and oscillatory signals are 
developed in EXAFS theory. After determination of the terms caused by VESC one could 
exclude the contributions due to the APDF and obtain in such a way the terms which 
depend on the ATDF. Unfortunately, these terms are functions of two variables only: w 
and s whereas the ATDF is a function of three variables. So it is impossible to determine 
the ATDF directly from experimental data; however, different models for the ATDF could 
be tested. As one can see from expressions (30) and (31) the experiments with s and p 
polarized incident beams give complementary information about the ATDF so both 
should be used to obtain the ATDF. The scattering intensity measurement of an incident 
wave having an arbitrary polarization vector direction gives no additional information. 
Indeed, such a wave can be treated as the superposition of two waves with electric field 
vectors perpendicular and parallel to the scattering plane. As follows from (16), this 
property is conserved for the electric field vectors of corresponding scattered waves as 
well. Therefore, the averaged intensity of the radiation scattered from an amorphous 
sample in any direction is the linear combination of the intensities Zp(w, s) (equation 
(30)) and Is(w, s) (equation (31)). 

If one employs the intensities Zp(w, s) and Is(w, s) to get information about the ATDF 
it is necessary to first estimate the intervals where the arguments w and s vary. The wider 
these intervals the more precise the information obtained about the ATDF. The interval 
of the photon energy, f iw, is almost the same as in the EXAFS investigation, i.e. from 
about 50 eV above the 1s threshold up to the value at which the signal to noise relation 
is not too small. This value is usually about several hundred electron voits. The interval 
of the diffraction vector modulus s variation depends on the atomic number Z of the 
atom investigated because the photon energy is close to the K absorption edge of this 
atom. Hence the maximum value of s is about El,/fic and it increases with the growth’of 
Z. On the other hand, the 1s level width also increases with the growth of Z that 
causes ASF fine-structure suppression. Takinginto account these restrictions, amorphous 
germanium seems to be very suitable for investigation of the ATDF by the method 
proposed in this paper. 
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